Friday, 23 December 2011

Listening to the earth move




Christchurch-based sound engineer Ben Edwards recorded a magnitude 6 earthquake which struck earthquake-plagued Christchurch in New Zealand on 23.12.11.

As Edwards tells it, "whilst recording some drums in an old brick warehouse for the up and coming Eastern album we experienced a large aftershock. (5.8 in magnitude). We sat outside for a while and convinced ourselves it was ok to re enter the old building and continue our project... I was rolling as we were undertaking some line and level checking... this time we got it. 6.0 magnitude in a room full of kegs and bottles."

It's an incredible and sobering listen, and helps you understand what it must be like living in Christchurch - a city that's experienced nearly 10,000 earthqukes since the big one in September 2010.

Source: http://soundcloud.com/charlie-underwood/chch-earthquake-23-12-11-raw

Thursday, 22 December 2011

The LHC finds its first new particle



After the excitement from last week's press conference from CERN, which revealed that whilst they are getting closer, scientists still haven't found the Higg's boson, I don't think anyone was expecting a boson discovery from the Large Hadron Collider (LHC) after-all. But we've been given an early Christmas present: the LHC has found it's first particle - Chi_b(nP).

Chi_b(nP) was found by physicists working with the ATLAS detector, who published their findings on arXiv yesterday. It is the first clear evidence for a new particle since the LHC opened in 2009.

Chi_b(nP) is made of a beauty quark and it's antiquark bound together. They are bonded by the so-called strong nuclear force which also causes the atomic nucleus to stick together. Chi_b(nP) is a heavier version of a particle that was first observed around 25 years ago. Like the elusive Higgs, it is a boson, meaning it is a particle that carries force.

"It's interesting for what it tells us about the forces that hold the quark and the anti-quark together - the strong nuclear force. And that's the same force that holds, for instance, the atomic nucleus together with its protons and the neutrons."
Prof Roger Jones from the ATLAS Collaboration, quoted on BBC News.

Source: http://arxiv.org/abs/1112.5154

The 3D printer as teleporter



If you only read one article on 3D printing this year, it should be Anil Dash's fascinating analysis of this important emerging technology. Set out as a set of observations and pearls of wisdom aimed at people experimenting with the technology, the article acts as a sort of wishlist for where Dash hopes the 3D fabrication and printing world is headed. Contained within the list is this nugget:

"These devices are not '3D fax machines'. What you've actually made, when you have an internet-connected device that can both send and receive 3D-printed objects, is a teleporter."
Provocative and exciting stuff. Read the article now.

Source: http://dashes.com/anil/2011/12/3d-printing-teleporters-and-wishes.html

Tuesday, 13 December 2011

Science has nothing to fear from uncertainty



Ahead of today's press conference from CERN, which provides an update of the search for the Higg's boson, LHC physicist, Jon Butterworth, published a thoughtful piece in the Guardian, which reflected on this and the recent neutrino results from OPERA. In relation to the Higgs, he noted;

"Thanks to this machine, we will know quite soon which option – Higgs boson, or not – is realised in nature. If you are curious about the universe we live in, the prospect is pretty tasty either way. The Higgs boson is a long-searched-for prediction of the "standard model" of particle physics. Should it exist, it is responsible for the mass of the fundamental particles we are all made of, such as electrons and quarks. Its discovery would be a stunning vindication that our aesthetics and mathematics are genuinely connected with how the universe really operates. If it doesn't exist, then in a sense it's back to the drawing board: it would mean our understanding of nature has failed at the energies accessible at the LHC. We would have to learn some new tricks."

The quote that really caught my eye though was Butterworth's elaboration of the title of this post:

"It is worth being wrong in public sometimes. We should all know that science is a betting system, not a belief system. Near-certainty arises from a morass of uncertainty, it does not drop from heaven gift-wrapped. "

And now back to holding our breath ahead of the CERN press seminar ....

Source: http://www.guardian.co.uk/commentisfree/2011/dec/12/higgs-boson-particle-physics-benefit

Wednesday, 7 December 2011

Has the LHC found the Higgs?



The science blogosphere has been alive with rumours for the past few days suggesting that the large Hadron Collider may have found strong evidence for the Higgs boson. Staff have been notified that a press conference is being held on 13 December, with updates being given from the research groups associated with the two main detectors at the LHC - ATLAS and the CMS.

The rumours are centred on evidence of the Higgs being located at low mass ranges - around 125-126 GeV.

The rumours have become so strong that John Ellis, Clerk Maxwell Professor of Theoretical Physics at King's College London, was quoted today on the BBC, saying that he's expecting to see "the first glimpse of the Higgs next week:

"I think we are going to get the first glimpse. The LHC experiments have already looked high and low for this missing piece. It could be that it weighs several hundred times the proton mass, but that seems very unlikely, then there's a whole intermediate range where we know it cannot be, then there's the low mass range where we actually expect it might be. There seem to be some hints emerging there... and that's what we're going to learn on Tuesday".

Ian Sample provided a useful update of the various positions and murmurings here.

Source: http://www.math.columbia.edu/~woit/wordpress/?p=4212

Friday, 18 November 2011

Is the wavefunction physically real?



Fundamental physics is having a big week! This week Eugenie Reich at Nature reported on a paper that's sending shockwaves through the quantum physics world. Physicists including by Matthew Pusey at Imperial College London, are daring to imagine that the staple of quantum theory - the wavefunction - might be a little bit more real that physicists had previous believed.

As Reich outlines:
"At the heart of the weirdness for which the field of quantum mechanics is famous is the wavefunction, a powerful but mysterious entity that is used to determine the probabilities that quantum particles will have certain properties. [....] Whereas many physicists have generally interpreted the wavefunction as a statistical tool that reflects our ignorance of the particles being measured, [Pusey & co] argue that, instead, it is physically real."

“I don't like to sound hyperbolic, but I think the word 'seismic' is likely to apply to this paper,” says Antony Valentini, a theoretical physicist specializing in quantum foundations at Clemson University in South Carolina.

Source: http://www.nature.com & http://lanl.arxiv.org/abs/1111.3328

Thursday, 10 November 2011

20Hz by Semiconductor



One of the works commissioned for the Invisible Fields: Geographies of Radio Waves exhibition in Barcelona was 20 Hz, an amazing new piece by Brighton-based artists and filmmakers, Semiconductor.

Semiconductor were commissioned to make a piece which showed us the relationship between radio waves and sound. The resulting work - 20 Hz - is an astonishing 5 minute video which uses data collected by the CARISMA radio array. CARISMA (Canadian Array for Realtime Investigations of Magnetic Activity) is is an array of magnetometers which study the Earth’s magnetosphere. 20 Hz is an interpretation of a magnetic storm occurring in the Earth’s upper atmosphere. The CARISMA data – captured at the frequency of 20 Hertz – is interpreted as audio, allowing us to hear the “tweets” and “rumbles” caused by the interaction of solar wind with the Earth’s magnetosphere. The visual element of the film is generated directly by the sound. Tangible and sculptural forms emerge suggestive of scientific visualisations. As different frequencies interact both visually and aurally, complex patterns emerge to create interference phenomena that probe the limits of our perception.

You can watch it at the artists’ website here.

Invisible Fields: Geographies of Radio Waves is a show that explores how our understanding of our world and our cosmos has been transformed by the study of radio waves. It is showing at Arts Santa Mònica in Barcelona, from 14 October 2011 - 4 March 2012.


Source:
&

Tuesday, 25 October 2011

Invisible Fields: Geographies of Radio Waves



Wireless in the World by Timo Arnall, showing at Invisible Fields.

Last week a new exhibition exploring the radio spectrum - the invisible environment that underpins contemporary technology - opened at Arts Santa Mònica in Barcelona. Mixing science, politics, architecture, design and art, Invisible Fields sets out the spectrum as a physical space, invisible but present, a terrain that can be studied, mapped, surveyed and explored.

It is co-curated by Spanish researcher and curator, José Luis de Vicente and Particle Decelerator's Honor Harger, and is a co-production of Arts Santa Mònica and Lighthouse in the UK (where Honor works).

The exhibition illustrates how artists, designers and activists have worked in tandem with scientists and researchers to illuminate some of most important characteristics of this intangible ecology. It includes well-known artists such as Rafael Lozano-Hemmer, Trevor Paglen, Semiconductor, and Joyce Hinterding, as well as designers including Timo Arnall (of super-design form, BERG) and Anthony DeVincenzi (of the MIT Media Lab), and interventions from astrophysicists, engineers and hackers.

Invisible Fields shows how radio space is an environment made of signals and waves from nature, and from us. Its topography is formed of waves of different scales, from tiny emissions given off by domestic objects to vast emissions made by distant astronomical phenomena. It's made up of signals that are very familiar, such as television and radio, to the esoteric and enigmatic signals. It is an ecology that has public spaces - wireless internet and amateur radio - and secret spaces - coded military transmissions and clandestine signals.

This kind of interdisciplinary exploration of a topic such as the radio spectrum, is rarely undertaken by cultural institutions. With the exception of visionary galleries such as The Science Gallery in Dublin, few arts organisations are open to the idea of exhibitions which blend artistic practice, social-cultural analysis, and science communication. This makes the Laboratory space of Arts Santa Mònica, directed by Josep Perelló, very special, and well worth keeping an eye on.

A catalogue is being produced featuring guest essays by guest essays by Douglas Kahn, Adam Greenfield, Martin Howse. The catalogue, pub;lished by ACTAR, is released in three editions - English, Spanish and Catalan.
There's an online preview of the catalogue here.

Invisible Fields is showing at Arts Santa Mònica in Barcelona, from 14 October 2011 - 4 March 2012.

Source: http://www.lighthouse.org.uk/programme/invisible-fields

Sunday, 17 July 2011

Largest Radio Telescope Ever Launched into Space is Set to Go

Spectr1

Exciting news in the world of radio astronomy this week, as several sources confirm that the long awaited Russian space telescope, RadioAstron, is due to launch on 18 July from Kazakhstan's Baikonur cosmodrome.

RadioAstron (pictured at Baikonur) will orbit the earth, and using interferometry, will become the the largest radio telescope ever built, with an observing area almost 30 times the Earth's diameter.

"There has never been a radio telescope that has been sent so far from the Earth," commented Yuri Kovalev, of Lebedev Physical Institute's Astro Space Center in Moscow, Russia, the managers of the project.

When it reaches an orbit that will extend almost as far as the moon, it will begin coordinating observations with telescopes on the ground, including the 100 metre radio telescopes in Green Bank, West Virginia, and Effelsberg, Germany, and the world's largest dish, the 305 metre Arecibo telescope in Puerto Rico.

The technique of interferometry is commonly used in radio astronomy. It involves linking telescopes from across the world in simultaneous observations of a single astronomical target. It is the basis for the Square Kilometre Array (SKA), which is being hailed - alongside the LHC - as one of the great science endeavours of the early 21st Century. Particle Decelerator reported on the SKA in April.

RadioAstron's principle science objective is to study the super massive black hole at the centre of Messier 87, a nearby galaxy. It will also be observing pulsars - spinning neutron stars - attempting to help astronomers understand how dust and gas is distributed around stars. But perhaps the most fascinating phenomena that RadioAstron will examine is natural masers. In electronics, a maser - "microwave amplification by stimulated emission of radiation" - is a device that amplifies electromagnetic waves. But masers occur in nature as well. Natural masers are found in outer space when water or other substances are excited by radiation from a star or by the energy of a collision.

As Rachel Courtland explains in New Scientist, RadioAstron "will also be able to register the radio waves emitted by water masers, clouds of water molecules that emit microwave radiation, in the discs of galaxies. This motion can be used to study the rotation rate of the galaxies and measure their distance from Earth. When combined with observations of how fast the galaxies are moving, astronomers can use the galaxy distances to calculate the present-day expansion rate of space and the effect of dark energy."

Conceived in Soviet times, RadioAstron has been delayed multiple times over the past two decades, so it's launch is being met with excitement and relief within the international radio astronomy community. The rocket carrying RadioAstron is due for launch from Baikonur at 0231 GMT on 18 July 2011.

Source: http://www.asc.rssi.ru/radioastron/

http://www.federalspace.ru/main.php?id=2&nid=17486

http://wvgazette.com/News/201107120808

Dark Energy Lurking in the Cosmic Background?


Two new papers published in the Physical Review Letters appear to provide new evidence for the existence of dark energy – the mysterious substance that appears to be accelerating the expansion of the universe. A team of astronomers at the University of California, Berkeley have found what they refer to as "direct evidence" for dark energy within the cosmic microwave background (CMB).

Science writer, Colin Stuart explains:

"The CMB is the faint afterglow of the universe's birth in the Big Bang. Around 400,000 years after its creation, the universe had cooled sufficiently to allow electrons to bind to atomic nuclei. This "recombination" set the CMB radiation free from the dense fog of plasma that was containing it. Space telescopes such as WMAP and Planck have charted the CMB and found its presence in all parts of the sky, with a temperature of 2.7K. However, measurements also show tiny fluctuations in this temperature on the scale of one part in a million. These fluctuations follow a Gaussian distribution."

Sudeep Das and his colleagues at the University of California, Berkeley, used the Atacama Cosmology Telescope in Chile to uncover fluctuations in the CMB that deviate from this Gaussian distribution. "On average, a CMB photon will have encountered around 50 large-scale structures before it reaches our telescope," Das told Physics World.

"The gravitational influence of these structures, which are dominated by massive clumps of dark matter, will each deflect the path of the photon," he adds. This process, called "lensing", eventually adds up to a total deflection of around 3 arc minutes – one-20th of a degree.

Stuart elaborates further:

"In the second paper Das, along with Blake Sherwin of Princeton University and Joanna Dunkley of Oxford University, looks at how lensing could reveal dark energy. Dark energy acts to counter the emergence of structures within the universe. A universe with no dark energy would have a lot of structure. As a result, the CMB photons would undergo greater lensing and the fluctuations would deviate more from the original Gaussian distribution. However, the opposite was found to be true. "We see too little lensing to account for a universe with no dark energy," Sherwin told physicsworld.com. "In fact, the amount of lensing we see is consistent with the amount of dark energy we would expect to see from other measurements."

This is the first time dark energy has been inferred from measurements of the CMB alone.

The fact that this is direct evidence, rather than relying on a second measurement, excites Stephen Boughn, a cosmologist at Haverford College in the US. "We currently only have two pieces of direct evidence for dark energy. Any additional evidence that indicates its existence is very important," he says. "We want a patchwork of evidence, from many different places, just to make sure the whole picture hangs together. This work helps with that."

Source: http://physicsworld.com/cws/article/news/46572