Tuesday, 24 November 2009

Quantum Gravity Decouples Space & Time















Can unzipping the fabric of spacetime & harking back to 19th century notions of time yield a theory of quantum gravity?

Scientific American reports that there's a buzz about a quantum gravity theory that could send space and time back to their Newtonian roots.

Physicists have struggled to marry quantum mechanics with gravity for decades. In contrast, the other forces of nature have obediently fallen into line. For instance, the electromagnetic force can be described quantum-mechanically by the motion of photons. Try and work out the gravitational force between two objects in terms of a quantum graviton, however, and you quickly run into trouble—the answer to every calculation is infinity.

But now Petr Hořava, a physicist at the University of California, Berkeley, thinks he understands the problem. It’s all, he says, a matter of time. More specifically, the problem is the way that time is tied up with space in Einstein’s theory of gravity: general relativity. Einstein famously overturned the Newtonian notion that time is absolute—steadily ticking away in the background. Instead he argued that time is another dimension, woven together with space to form a malleable fabric that is distorted by matter. The snag is that in quantum mechanics, time retains its Newtonian aloofness, providing the stage against which matter dances but never being affected by its presence. These two conceptions of time don’t gel.

The solution, Hořava says, is to snip threads that bind time to space at very high energies, such as those found in the early universe where quantum gravity rules. “I’m going back to Newton’s idea that time and space are not equivalent,” Hořava says. At low energies, general relativity emerges from this underlying framework, and the fabric of spacetime restitches, he explains.

Source:
http://www.scientificamerican.com/article.cfm?id=splitting-time-from-space

No comments:

Post a Comment